

Teacher : Dimitri Wyss Structures algébriques - MA

25.01.2024

Duration: 180 minutes

1

Student 1

SCIPER: 999000 Signature:

Do not turn the page before the start of the exam. This document is double-sided, has 4 pages, the last ones possibly blank. Do not unstaple.

- Place your student card on your table.
- No other paper materials are allowed to be used during the exam.
- Using a **calculator** or any electronic device is not permitted during the exam.
- The space allotted is sufficient, so do not add a sheet to your exam. Page 4 is empty. If necessary, specify at the end of the exercise that you are continuing on page 4 (otherwise the page will not be corrected).
- Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
- If a question is wrong, the teacher may decide to nullify it.

Open questions

Answer in the empty space below. Your answer should be carefully justified, and all the steps of your argument should be discussed in details. Leave the check-boxes empty, they are used for the grading.

Question 1: This question is worth 9 points.

Soit G un groupe fini, tel que tous ses éléments non-triviaux ont ordre 2.

- (a) Montrer que G est abélien.
- (b) Soit $H \leq G$ un sous-groupe et $g \in G \setminus H$. Montrer que $H \cup gH$ est un sous-groupe de G.
- (c) Montrer que $|H \cup gH| = 2|H|$.
- (d) Déduiser qu'il existe un entier $k \ge 0$ tel que $|G| = 2^k$.

Question 2: This question is worth 9 points.

- (a) Donner la définition du produit semi-directe.
- (b) Montrer qu'il existe qu'un produit semi-direct non-trivial $\mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/4\mathbb{Z}$.
- (c) Déterminer l'ordre des éléments ([1], [1]) et ([1], [2]) dans $\mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/4\mathbb{Z}$.
- (d) Montrer que $\mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/4\mathbb{Z}$ n'est pas isomorphe à D_{12}

Question 3: This question is worth 9 points.

- (a) Ecrire les permutations suivantes sous la forme de produits de cycles disjoints:
 - (i) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 2 & 4 & 1 & 6 \end{pmatrix}$
 - (ii) (147)(452)(23)(16)
- (b) Soit $\sigma \in S_6$ la permutation $\sigma = (123456)$. Ecrire tous les éléments dans l'intersection

$$\langle \sigma \rangle \cap A_6$$
,

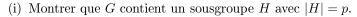
sous la forme de produits de cycles disjoints.

(c) Montrer que pour chaque $\sigma \in S_n$ il existe un $\tau \in S_n$ tel que $\tau \sigma \tau^{-1} = \sigma^{-1}$.

Question 4: This question is worth 9 points.

- (a) Enoncer le Théorème de Lagrange.
- (b) Démontrer le Théorème de Lagrange en utilisant la théorie des classes à gauche vu dans le cours.
- (c) Soit p un nombre premier et G un groupe avec $|G| = p^2$.

Pour votre examen, imprimez de préférence les documents compilés à l'aide de auto-multiple-choice.



(ii) Montrer que G est cyclique si et seulement si G contient un unique sousgroupe H avec |H|=p.

Question 5: This question is worth 12 points.

(a) Soit $A = \{1, 2, 3, 4, 5, 6, 7\}$. Combien de relations d'équivalence $R \subset A \times A$ existent tel que $(1, 3), (2, 6), (3, 5) \in R$? Expliquer votre raisonnement.

(b) Soit A un ensemble fini et $f:A\to A$ une application. On considère l'ensemble $R\subset A\times A$ définie par

$$R = \{(a, b) \in A \times A \mid \exists n \ge 1 : b = f^n(a)\}.$$

Ici on utilise la notation $f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ fois}}$.

- (i) Montrer que R est une relation d'équivalence si et seulement si f est une bijection.
- (ii) Calculer le cardinal de A/R pour $A = (\mathbb{Z}/10\mathbb{Z})^{\times}$ et

$$f: (\mathbb{Z}/10\mathbb{Z})^{\times} \to (\mathbb{Z}/10\mathbb{Z})^{\times}$$
$$[a] \mapsto [a^3].$$

Vous pouvez admettre que f est une bijection.